
4/2/2015 Writing shell scripts - Lesson 2: Editing the scripts you already have

http://linuxcommand.org/lc3_wss0020.php 1/7

Editing The Scripts You Already Have
Before we get to writing new scripts, I want to point out that you have some scripts
of your own already. These scripts were put into your home directory when your
account was created, and are used to configure the behavior of your sessions on
the computer. You can edit these scripts to change things.

In this lesson, we will look at a couple of these scripts and learn a few important
new concepts about the shell.

During your session, the system is holding a number of facts about the world in its
memory. This information is called the environment. The environment contains such
things as your path, your user name, the name of the file where your mail is
delivered, and much more. You can see a complete list of what is in your
environment with the set command.

Two types of commands are often contained in the environment. They are aliases
and shell functions.

How Is The Environment Established?

http://linuxcommand.org/lc3_man_pages/seth.html


4/2/2015 Writing shell scripts - Lesson 2: Editing the scripts you already have

http://linuxcommand.org/lc3_wss0020.php 2/7

When you log on to the system, the bash program starts, and reads a series of
configuration scripts called startup files. These define the default environment
shared by all users. This is followed by more startup files in your home directory that
define your personal environment. The exact sequence depends on the type of shell
session being started. There are two kinds: a login shell session and a non-login
shell session. A login shell session is one in which we are prompted for our user
name and password; when we start a virtual console session, for example. A non-
login shell session typically occurs when we launch a terminal session in the GUI.

Login shells read one or more startup files as shown below:

File Contents

/etc/profile A global configuration script that applies to all users.

~/.bash_profile A user's personal startup file. Can be used to extend or
override settings in the global configuration script.

~/.bash_login If ~/.bash_profile is not found, bash attempts to read
this script.

~/.profile If neither ~/.bash_profile nor ~/.bash_login is
found, bash attempts to read this file. This is the default in

Debian-based distributions, such as Ubuntu.



4/2/2015 Writing shell scripts - Lesson 2: Editing the scripts you already have

http://linuxcommand.org/lc3_wss0020.php 3/7

Non-login shell sessions read the following startup files:

File Contents

/etc/bash.bashrc A global configuration script that applies to all users.

~/.bashrc A user's personal startup file. Can be used to extend or
override settings in the global configuration script.

In addition to reading the startup files above, non-login shells also inherit the
environment from their parent process, usually a login shell.

Take a look at your system and see which of these startup files you have.
Remember— since most of the file names listed above start with a period (meaning
that they are hidden), you will need to use the “-a” option when using ls.

The ~/.bashrc file is probably the most important startup file from the ordinary
user’s point of view, since it is almost always read. Non-login shells read it by
default and most startup files for login shells are written in such a way as to read the
~/.bashrc file as well.

If we take a look inside a typical .bash_profile (this one taken from a CentOS 4
system), it looks something like this:

# .bash_profile
# Get the aliases and functions



4/2/2015 Writing shell scripts - Lesson 2: Editing the scripts you already have

http://linuxcommand.org/lc3_wss0020.php 4/7

# Get the aliases and functions
if [ -f ~/.bashrc ]; then
 . ~/.bashrc
fi

# User specific environment and startup programs
PATH=$PATH:$HOME/bin
export PATH

Lines that begin with a “#” are comments and are not read by the shell. These are
there for human readability. The first interesting thing occurs on the fourth line, with
the following code:

if [ -f ~/.bashrc ]; then
 . ~/.bashrc
fi

This is called an if compound command, which we will cover fully in a later lesson,
but for now I will translate:

If the file "~/.bashrc" exists, then read the "~/.bashrc" file.

We can see that this bit of code is how a login shell gets the contents of .bashrc.
The next thing in our startup file does is set set PATH variable to add the ~/bin
directory to the path.

Lastly, we have:

export PATH



4/2/2015 Writing shell scripts - Lesson 2: Editing the scripts you already have

http://linuxcommand.org/lc3_wss0020.php 5/7

The export command tells the shell to make the contents of PATH available to
child processes of this shell.

Aliases
An alias is an easy way to create a new command which acts as an abbreviation for
a longer one. It has the following syntax:

alias name=value

where name is the name of the new command and value is the text to be executed
whenever name is entered on the command line.

Let's create an alias called "l" and make it an abbreviation for the command "ls-l".
Make sure you are in your home directory. Using your favorite text editor, open the
file .bashrc and add this line to the end of the file:

alias l='ls -l'

By adding the alias command to the file, we have created a new command called
"l" which will perform "ls -l". To try out your new command, close your terminal
session and start a new one. This will reload the .bashrc file. Using this technique,
you can create any number of custom commands for yourself. Here is another one
for you to try:

alias today='date +"%A, %B %-d, %Y"'

http://linuxcommand.org/lc3_man_pages/aliash.html
http://linuxcommand.org/lc3_man_pages/exporth.html


4/2/2015 Writing shell scripts - Lesson 2: Editing the scripts you already have

http://linuxcommand.org/lc3_wss0020.php 6/7

alias today='date +"%A, %B %-d, %Y"'

This alias creates a new command called "today" that will display today's date with
nice formatting.

By the way, the alias command is just another shell builtin. You can create your
aliases directly at the command prompt; however they will only remain in effect
during your current shell session. For example:

[me@linuxbox me]$ alias l='ls -l'

Shell Functions
Aliases are good for very simple commands, but if you want to create something
more complex, you should try shell functions. Shell functions can be thought of as
"scripts within scripts" or little sub-scripts. Let's try one. Open .bashrc with your
text editor again and replace the alias for "today" with the following:

today() {
    echo -n "Today's date is: "
    date +"%A, %B %-d, %Y"
}



4/2/2015 Writing shell scripts - Lesson 2: Editing the scripts you already have

http://linuxcommand.org/lc3_wss0020.php 7/7

Believe it or not, () is a shell builtin too, and as with alias, you can enter shell
functions directly at the command prompt.

[me@linuxbox me]$ today() {
> echo -n "Today's date is: "
> date +"%A, %B %-d, %Y"
> }
[me@linuxbox me]$

However, again like alias, shell functions defined directly on the command line
only last as long as the current shell session.

© 2000-2015, William E. Shotts, Jr. Verbatim copying and distribution of this entire article is permitted in
any medium, provided this copyright notice is preserved.

Linux® is a registered trademark of Linus Torvalds.

http://linuxcommand.org/lc3_man_pages/functionh.html
mailto:bshotts@users.sourceforge.net

